# Reference Angle
If the [[Coterminal|Coterminal Angle]] of $\theta$ is in:
- Quadrant $\mathrm{I}$:
- $0 \leq \theta \leq \frac{\pi}{2}$
- $Reference ~ Angle = \theta$
- $0\degree \leq ~\theta\degree \leq 90\degree$
- $Reference ~ Angle\degree = \theta\degree$
- Quadrant $\mathrm{II}$:
- $\frac{\pi}{2} \leq \theta \leq \pi$
- $Reference ~ Angle = \pi - \theta$
- $90\degree \leq ~\theta\degree \leq 180\degree$
- $Reference ~ Angle\degree = 180\degree - \theta\degree$
- Quadrant $\mathrm{III}$:
- $\pi \leq \theta \leq \frac{3\pi}{2}$
- $Reference ~ Angle = \theta - \pi$
- $180\degree \leq ~\theta\degree \leq 270\degree$
- $Reference ~ Angle = \theta\degree - 180\degree$
- Quadrant $\mathrm{IV}$:
- $\frac{3\pi}{2} \leq \theta \leq 2\pi$
- $Reference ~ Angle = 2\pi - \theta$
- $270\degree \leq ~\theta\degree \leq 360\degree$
- $Reference ~ Angle = 360\degree - \theta\degree$