# Exponents $(\frac{1}{a})^x = (a^{-1})^x = a^{-x} = \frac{1}{a^{-x}}$ $a^{x+y} = a^x * a^y$ $a^{x-y} = a^x ÷ a^y$ $a^{x*y} = (a^x)^y = (a^y)^x$ $a^{\frac{x}{y}}=$ $b^{log_b(x)} = x$ $(\frac{a}{b})^x = \frac{a^x}{b^x}$ $(a+b)^2 = (a+b)(a+b) = a^2 + 2ab + b^2$